김영한(가운데) 가우스랩스 대표가 미국 캘리포니아주 새너제이에서 열린 국제학회 ‘SPIE AL 2024’에 참가해 구성원들과 기념사진을 촬영하고 있다. [SK하이닉스 제공] |
[헤럴드경제=김현일 기자] SK하이닉스와 가우스랩스가 지난 25~29일 미국 캘리포니아주 새너제이(San Jose)에서 열린 국제학회 ‘SPIE AL 2024’에서 인공지능(AI) 기반 반도체 계측 기술 개발 성과를 발표했다고 29일 밝혔다.
SPIE AL은 국제광전자공학회(SPIE)가 주최하는 콘퍼런스로, 반도체 회로를 그리기 위한 노광기술 전반에 대한 논의가 이뤄진다.
가우스랩스는 AI 기반 가상 계측 솔루션 ‘Panoptes VM(Virtual Metrology)’의 예측 정확도를 높이는 알고리즘인 ‘통합 적응형 온라인 모델(Aggregated AOM)’을 소개했다.
SK하이닉스는 2022년 12월부터 Panoptes VM을 도입해 현재까지 5000만장 이상의 웨이퍼에 가상 계측을 진행했다. 이를 시간으로 환산하면 초당 1개 이상의 웨이퍼를 가상 계측한 것으로, 이 소프트웨어의 성능에 힘입어 공정에서 생산된 제품들의 품질 변동폭을 약 29% 줄일 수 있었다.
가우스랩스는 학회 발표에서 ‘범용 노이즈 제거 기술(Universal Denoising)’도 소개했다. 반도체 계측 중 일부 작업은 반도체 구조 검사용 전자 현미경(CD-SEM) 이미지를 바탕으로 진행된다. 극도로 작은 나노미터 단위까지 정확하게 측정하기 위해선 전자 현미경 이미지의 잡티를 제거해 해상도를 높이는 것이 중요하다.
가우스랩스가 개발한 기술은 AI를 이용해 다양한 형태의 이미지에서 잡티를 한번에 제거해 준다. 가우스랩스는 “SK하이닉스와 테스트를 진행한 결과 이미지 획득 시간이 기존 기술의 4분의 1까지 단축되는 것을 확인했다”며 “앞으로 이 기술이 반도체 계측 장비의 생산성을 42% 개선할 것”이라고 전망했다.
SK하이닉스는 “당사는 반도체 수율과 생산성을 높이기 위해 그동안 가우스랩스와 다양한 영역에서 협업을 진행해 왔고, 이번에 권위 있는 국제학회에서 양사의 개발 성과가 담긴 논문 2편을 발표하게 됐다”며 “앞으로도 가우스랩스와 지속 협력해 기술 우위를 확보하기 위해 노력하겠다”고 밝혔다.